Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism.
نویسندگان
چکیده
Although mitochondrial dysfunction and reactive oxygen species (ROS) stress have long been observed in cancer cells, their role in promoting malignant cell behavior remains unclear. Here, we show that perturbation of the mitochondrial respiratory chain in breast cancer cells leads to a generation of subclones of cells with increased ROS, active proliferation, high cellular motility, and invasive behaviors in vitro and in vivo. Gene expression analysis using microarrays revealed that all subclones overexpressed CXCL14, a novel chemokine with undefined function. We further show that CXCL14 expression is up-regulated by ROS through the activator protein-1 signaling pathway and promotes cell motility through elevation of cytosolic Ca(2+) by binding to the inositol 1,4,5-trisphosphate receptor on the endoplasmic reticulum. Abrogation of CXCL14 expression using a decoy approach suppressed cell motility and invasion. Our data suggest that mitochondrial dysfunction and ROS stress promote cancer cell motility through a novel pathway mediated by CXCL14.
منابع مشابه
Mitochondrial Dysfunction Promotes Breast Cancer Cell Migration and Invasion through HIF1α Accumulation via Increased Production of Reactive Oxygen Species
Although mitochondrial dysfunction has been observed in various types of human cancer cells, the molecular mechanism underlying mitochondrial dysfunction mediated tumorigenesis remains largely elusive. To further explore the function of mitochondria and their involvement in the pathogenic mechanisms of cancer development, mitochondrial dysfunction clones of breast cancer cells were generated by...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملPerfluorooctanesulfonate (PFOS) Induces Apoptosis Signaling and Proteolysis in Human Lymphocytes through ROS Mediated Mitochondrial Dysfunction and Lysosomal Membrane Labialization
Perfluorinated compounds (PFCs) such as perfluorooctanesulfonate (PFOS) are stable chemicals that accumulate in biological matrix. Toxicity of these compounds including immunotoxicity has been demonstrated in experimental models and wildlife. Although limited number of studies examined the effects of PFOS on human lymphocytes but so far no research has investigated the complete mechanisms of PF...
متن کاملPerfluorooctanesulfonate (PFOS) Induces Apoptosis Signaling and Proteolysis in Human Lymphocytes through ROS Mediated Mitochondrial Dysfunction and Lysosomal Membrane Labialization
Perfluorinated compounds (PFCs) such as perfluorooctanesulfonate (PFOS) are stable chemicals that accumulate in biological matrix. Toxicity of these compounds including immunotoxicity has been demonstrated in experimental models and wildlife. Although limited number of studies examined the effects of PFOS on human lymphocytes but so far no research has investigated the complete mechanisms of PF...
متن کاملEpoxyeicosatrienoic acids attenuate reactive oxygen species level, mitochondrial dysfunction, caspase activation, and apoptosis in carcinoma cells treated with arsenic trioxide.
Epoxyeicosatrienoic acids (EETs) and the cytochrome P450 epoxygenase CYP2J2 promote tumorogenesis in vivo and in vitro via direct stimulation of tumor cell growth and inhibition of tumor cell apoptosis. Herein, we describe a novel mechanism of inhibition of tumor cell apoptosis by EETs. In Tca-8113 cancer cells, the antileukemia drug arsenic trioxide (ATO) led to the generation of reactive oxyg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 69 6 شماره
صفحات -
تاریخ انتشار 2009